

ECEN 3723 Systems I Section 001 CID:12325 Fall 2010 Syllabus

<u>Time</u> :	Tuesday/Thursday 12:30PM-1:45PM
<u>Place</u> :	Engineering South 214A
<u>Prerequisite</u> :	ENSC 2613- Introduction to Electrical Science MATH 2233- Differential Equations
<u>Text</u> :	<i>System Dynamics</i> (ISBN 0-13-142462-9) Katsuhiko Ogata, Prentice-Hall, 4 th edition, 2004
<u>References</u> :	Automatic Control Systems Farid Golnaraghi and Benjamin Kuo, John Wiley, 9 th , 2010 Modeling and Analysis of Dynamic Systems Charles Close, Dean Frederick and Jonathan Newell, John Wiley, 3 rd , 2002 System Dynamics William Palm III, McGraw Hill, 2 nd , 2010 Signals and Systems Simon Haykin and Barry Van Veen, John Wiley, 2 nd , 2003 Signals, Systems and Transforms Charles Phillips, John Parr and Eve Riskin, Prentice-Hall, 3 rd , 2003
<u>Instructor</u> :	Professor Gary G. Yen, Engineering South 404 http://www.okstate.edu/elec-engr/faculty/yen 405-744-7743, 405-744-9198 (fax), gyen@okstate.edu Office Hours: Tuesday/Thursday 9:00AM-12:00PM; or by appointment only
<u>TA</u> :	TBA
<u>Objectives</u> :	To introduce selected basic tools needed for signal and system analysis and design applicable to dynamic controls through mathematical derivations and computer simulations. The topics include • signals and systems representation • <i>Laplace</i> transform • differential equation approach • transfer function approach • state space approach • modeling of electrical systems • modeling of mechanical systems • modeling of fluid and thermal systems • time-domain analysis of dynamic systems • time-domain analysis of control systems • frequency-domain analysis of control systems • frequency-domain analysis of control systems • Matlab and Simulink

<u>Grading</u> :	 9 Weekly Homework Assignments (<i>Tentative Schedule</i>) 9/2, 9/9, 9/16, 9/23 (before the first midtem) 10/14, 10/21, 10/28, 11/11 (before the second midterm) 12/2 (after the second midterm) 11/25 Thembediating Helideau 	20%
	 11/25 Thanksgiving Holiday Midterm Exam 1 (October 7, 12:30PM-2:00PM) Oral Presentation (November 4, 12:30PM-2:00PM) Midterm Exam 2 (November 23, 12:30PM-2:00PM) Final Exam (December 14, 10:00AM-11:50AM) A-88% above; B-75%-87%; C-65%-74%; D-55%-64%; F-54% & No makeup exams will be given. 	20% 20% 20% 20% below
<u>Note</u> :	All exams are open notes, but close book.	
Drop and Add:	The instructor will follow University, College and Departmental guidelines for drops and adds. Consult the calss schedule book or departmental counselors for more information.	
<u>Attendance</u> :	Students will be expected to attend class. Habitual failure to do so will result in a reduced grade. Class attendance is taken periodically for reference. An incomplete grade will only be given when a student misses a portion of the semester because of illness or accident. All (I) grades must be completed within thirty days.	
<u>Academic Integrity</u> :	The instructor will strictly follow OSU's Academic Integrity Cheating on homework, quizzes or examinations, plagiarism forms of academic dishonesty are serious offenses and will su student to serious penalties.	and other
	<u>Plagiarism</u> . Presenting the written, published or creative work as your own work. Whenever you use wording, argument, da etc., belonging to someone else in a paper, report, oral preser other assignment, you must take this fact explicitly clear by of the appropriate references or sources. You must fully indicate which any part or parts of the project are attributed to others citations for paraphrased materials.	ta, design, ntation, or correctly citing e the extent to
<u>Disability Impairment</u> :	If any member of the class feels that he/she has a disability as special accommodations of any nature whatsoever, the instru- with you and the University Office of Disabled Student Server provide reasonable accommodations to ensure that you have opportunity to perform in this class. Please advise the instruc- disability and the desired accommodations at some point before immediately after the first scheduled class.	ctor will work ices to a fair tor of such
<u>Class Website</u> :	You are advised to check on class website at Online Classroo <u>https://oc.okstate.edu</u> prior to each class for important inform handouts, homework assignments, schedule changes, old exa You are expected to bring in your own copy of lecture notes	nation, such as ms and etc.